首页> 外文OA文献 >A discontinuous Galerkin method for solving the fluid and MHD equations in astrophysical simulations
【2h】

A discontinuous Galerkin method for solving the fluid and MHD equations in astrophysical simulations

机译:用于求解流体和mHD方程的不连续Galerkin方法   在天体物理模拟中

摘要

A discontinuous Galerkin (DG) method suitable for large-scale astrophysicalsimulations on Cartesian meshes as well as arbitrary static and moving Voronoimeshes is presented. Most major astrophysical fluid dynamics codes use a finitevolume (FV) approach. We demonstrate that the DG technique offers distinctadvantages over FV formulations on both static and moving meshes. The DG methodis also easily generalized to higher than second-order accuracy withoutrequiring the use of extended stencils to estimate derivatives (thereby makingthe scheme highly parallelizable). We implement the technique in the AREPO codefor solving the fluid and the magnetohydrodynamic (MHD) equations. By examiningvarious test problems, we show that our new formulation provides improvedaccuracy over FV approaches of the same order, and reduces post-shockoscillations and artificial diffusion of angular momentum. In addition, the DGmethod makes it possible to represent magnetic fields in a locallydivergence-free way, improving the stability of MHD simulations and moderatingglobal divergence errors, and is a viable alternative for solving the MHDequations on meshes where Constrained-Transport (CT) cannot be applied. We findthat the DG procedure on a moving mesh is more sensitive to the choice of slopelimiter than is its FV method counterpart. Therefore, future work to improvethe performance of the DG scheme even further will likely involve the design ofoptimal slope limiters. As presently constructed, our technique offers thepotential of improved accuracy in astrophysical simulations using the movingmesh AREPO code as well as those employing adaptive mesh refinement (AMR).
机译:提出了一种适用于笛卡尔网格上的大规模天体物理模拟以及任意静态和移动Voronoimeshes的不连续Galerkin(DG)方法。大多数主要的天体流体动力学代码都使用有限体积(FV)方法。我们证明了DG技术在静态和动态网格上都比FV公式具有明显的优势。 DG方法也很容易推广到高于二阶精度,而无需使用扩展模板来估计导数(从而使该方案具有高度可并行性)。我们在AREPO代码中实现了用于解决流体和磁流体动力学(MHD)方程的技术。通过检查各种测试问题,我们证明了我们的新公式相对于相同阶数的FV方法提供了更高的精度,并减少了震荡后的振荡和角动量的人为扩散。此外,DG方法使以局部无散度的方式表示磁场成为可能,从而提高了MHD模拟的稳定性并减轻了全局散度误差,并且是解决无法约束运输(CT)的网格上MHD方程的可行替代方案。应用。我们发现,相对于FV方法,移动网格上的DG程序对斜率限制器的选择更为敏感。因此,未来进一步改善DG方案性能的工作可能会涉及最佳斜率限制器的设计。按照目前的构造,我们的技术在使用运动网格AREPO代码以及采用自适应网格细化(AMR)的天体物理模拟中提供了提高精度的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号